First signs of ferroelectric

October 4, 2016, Nr. 073

Important contribution to the understanding of the physics of water

Scientists from Germany, Russia and Czech Republic have succeeded to pack water molecules in a gem stone in such a way that signs of ferroelectric order were observed for the first time in ice or an aqueous system. This is an important contribution to the understanding of the physics of water and opens the door to better understand the functioning of proteins and cells. The journal Nature Communications reported on it in its latest issue.

Water is not nearly as clear as it seems. Although water in daily life is pervasive as ice, liquid and vapor, and even though it is scientifically studied so intensely in every detail like no other material on earth, its physics is by far not understood yet. Why water is boiling, for example, only at 100 degrees centigrade, can be explained only by means of quantum mechanics: The reason is the strong electric fields by the two hydrogen atoms on oxygen in H 2O.
Even in crystalline ice the electric dipoles do not order. This implies that, that contrary to all simple models, ice is not ferroelectric. And this is true not only for ordinary ice which is referred to as hexagonal ice I h, but also for 15 other forms, which are observed only under extreme conditions in the laboratory or on the planets and moons of our solar system. Bridges formed by hydrogen bonds between adjacent water molecules prevent this order.
A group of scientists from Universität Stuttgart, from the Moscow Institute of Physics and Technology, the Academy of Sciences in Prague and other German, Russian and Czech research institutions have now succeeded, to pack water molecules in a gem in such way that they could for the first time observe signs of ferroelectric. For this purpose they use beryl crystals: a family of naturally occurring minerals, of which the emerald is the most famous with its fascinating green color.


Isolated but still interacting
In the nanotubes of crystals individual water molecules are incorporated, which are isolated from each other far enough so they cannot form hydrogen bonds, but close enough to electrically feel themselves. Using optical investigations in a wide spectral range from infrared, via THz frequencies to radio waves, the H 2O molecules could be observed directly. It was recognized that the electric dipoles are all aligned when the temperature is lowered to near absolute zero of -273 degrees Celsius. Only quantum fluctuations prevent the perfect ferroelectric order of the water molecules.


Impact on biology and data storage
The physicists suspect that the ferroelectricity of these isolated water molecules plays an important role in biological systems. "Maybe we can now better understand the functioning of proteins and cells, the electrical impulse transmission by means of the protons in nerve" hopes Prof. Martin Dressel from Physics 1 of University of Stuttgart. Perhaps one could these ideas now apply to fuel cells and data memories, in light sources and other electronic devices on the nanometer scale.

*Original publication:
Boris Gorshunov et al., Martin Dressel: Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nature Communications 7, 12842 (2016)
http://www.nature.com/ncomms/2016/160930/ncomms12842/full/ncomms12842.html

Contact:
Prof. Dr. Martin Dressel, Universität Stuttgart, 1. Physikalisches Institut Tel.: 0711-685 64946, Email: dressel@pi1.physik.uni-stuttgart.de

Emeralds and aquamarines get their fascinating colors by different impurities. These beryl gems form nanoscale tubes that are filled with water molecules, which exhibits quantum phenomena at low temperatures and indications of ferroelectric order
To the top of the page