

Masters (MSc) Medical Engineering

Exploring, Inventing and Developing Medical Technologies

Master`s program Medical Engineering

- This is a two year program (120 ECTS credits) mainly taught in German.
- A selection of courses is offered in English.
- Graduates are awarded the degree of Master of Science
- Exchange program with Eberhard Karl University of Tübingen

M.Sc. Medical Engineering Macrostructure

1st term	2nd term	3rd term	4th term
Advanced Modules 1 Engineering Design and Mechatronics (6 ECTS)	Advanced Modules 2 Biomaterials and Bioengineering (6 ECTS)		
Advanced Modules 3 Imaging, Measuring and Automation Technologies (6 ECTS)		Industrial / clinical- technical internschip (15 ECTS)	
Advanced Modules 4 Advanced Engineering and Deep Learning (6 ECTS)	Key Qualification related to the subject (3 ECTS)		Master`s Thesis Medical Engineering (30 ECTS)
	Key Qualificatinon interdisciplinary (3 ECTS)	Industrial / clinical-	
Specialization Subject 1 (18 ECTS, including practical training)		technical internschip (15 ECTS)	
Specializati (18 ECTS, includin	on Subject 2 g practical training)		
Total 30 ECTS	Total 30 ECTS	Total 30 ECTS	Summe: 30 LP

M.Sc. Medical Engineering Macrostructure

M.Sc. Medical Engineering

12 Specialization subjects

Automation Control

Areas of study

- systems theory
- control of systems
- cyber-physical systems
- optimization

Practical course Concepts of Control Technology Image: Institute for Systems Theory and Automatic Control

System Dynamics

Areas of study

- modeling
- simulation
- control and optimization of medical technology applications

Interoperative multisensory tissue differenciation Image: Universitätsklinikum Tübingen

Automation and Communication

Areas of study

- automation processes,
- communication and networking,
- software development,
- safety and reliability

Stationary Pill Dispenser

Pill Dispenser

Image: Institute of Industrial Automation & Software Engineering

Biomechanics and Bionics

Areas of study

- computer models,
- data science,
- continuum biomechanics,
- biorobotics and bionics

Fracture Management

Image: Institute for Modelling and Simulation of Biomechanical Systems

Biomedical Engineering

Areas of study

- minimally invasive implants
- tissue engineering
- physiological signal acquisition
- medical imaging
- numerical and in-vitro models
- biofluid dynamics

Practices in the polymer laboratory Image: Institute for Biomedical Engineering

Medical Device Technology

Areas of study

- actuators
- Sensors
- electronics
- design

Electrical impedance measurement Image: Institute of Medical Device Technology

Microsystems Technology

Areas of study

- microtechnology
- micromechanics
- microfluidics
- bioelectronics
- microoptics
- data processing

Microfluidics application

Image: Hahn-Schickard-Gesellschaft für angewandte Forschung

Imaging Methods and Sensor Signal Processing in Medical Technology

Areas of study

- medical imaging systems
- signal processing
- artificial intelligence
- machine learning

Positron Emission Tomography (PET) images Image: University of Stuttgart, Max Kovalenko

Optical Methods and Systems in Medical Technology

Areas of study

- optical systems
- manufacturing processes for optics
- optical design and simulation
- optical metrology

3D-printed Micro-Optics Image: Institute of Applied Optics

Engineering of Ceramic Components, Composite Materials and Surfaces

Areas of study

- coatings
- fiber composites
- solid ceramic components

Coating for implants and medical products Image: Institute for Manufacturing Technologies of Ceramic Components and Composites

Plastics Engineering

Areas of study

- materials and biomaterials
- production engineering
- plastic products

Twin-screw extruder for processing thermoplastics Image: Institute of Plastics Engineering

Biomedical Materials and Process Engineering

Areas of study

- additive manufacturing,
- medical textiles,
- regenerative medicine,
- artificial membranes,
- biomimetic and biobased surfaces

3D printing of hydrogels Image: IGVP

M.Sc. Medical Engineering Macrostructure

Advanced Modules

provide scientific and engineering foundations for four fields of knowledge, which are relevant to medical engineering.

From three of these groups, students must take one subject.

M. Sc. Medical Engineering Macrostructure

Advanced Modules can be replaced with modules from the Biomedical Technologies Master`s program at the University of Tübingen as part of a student exchange program.

Advanced Modules: Engineering Design

Exchange program

ECT	Term	ECTS
Clinical Cases and Consequences for Medical Devices	winter/ summer	6
Clinical Cases and Consequences for Medical Devices	winter/ summer	6
NanoBioAnalytics and -Physics	winter/ summer	6

Course Title	Term	ECTS	Institute
Models and Test Methods in Biomedical Engineering	summer	6	Biomedical Engineering
Biomedical Implant Engineering	winter	6	Biomedical Engineering
Computational Modeling of Flow in Organs and Medical Devices	summer	6	Biomedical Engineering
Applied Computational Fluid Dynamics 1	summer	6	Reactive Flows
Micro Technology and Microsystems Technology	summer	6	Micro Integration

Course Title	Term	ECTS	Institute
Optimal Control	winter	6	Computations in Control
Convex Optimization	winter	6	Computations in Control
Model Predictive Control	summer	6	Systems Theory and Automatic Control
Advanced Topics in Convex Optimization	summer	6	Systems Theory and Automatic Control
Biomechanics of Musculoskeletal Tissues	winter	6	Structural Mechanics and Dynamics in Aerospace Engineering
Lasers, Light Sources and Illumination Systems	winter	6	Applied Optics

M.Sc. Medical Engineering

Course Title	Term	ECTS	Institute
Medical Measurement Methods	winter	6	Medical Device Technology
Optical Signal Processing	summer	6	Display Technology
Optical Signal Processing	summer	6	Display Technology
Advanced Mathematics for Signal and Information Processing	winter	6	Network and System Technology
Deep Learning	summer	6	Network and System Technology
Detection and Pattern Recognition	summer	6	Network and System Technology
Statistical and Adaptive Signal Processing	winter	6	Network and System Technology

Course Title	Term	ECTS	Institute
Flat Systems	winter	6	System Dynamics
Dynamic Filtering	winter	6	System Dynamics
Introduction to Systems Biology	winter + summer	6	Systems Theory and Automatic Control
Communications II	winter	6	Telecommunications
Digital Video Communications	winter	6	Telecommunications
Model Predictive Control	summer	6	Systems Theory and Automatic Control
Nonlinear Control	summer	6	Systems Theory and Automatic Control
Robust Control	on an irregular basis	6	Mathematical Systems Theory

List of lectures in English: 3 ECTS

Course Title	Term	ECTS	Institute
Advanced Optical Design	on an irregular basis	3	Institute for Applied Optics Optical design and Simulation
Digital Image Processing	summer	3	Telecommunications
Neurovascular Implant Development	summer	3	Institute of Biomedical Engineering
Introduction to Neuromechanics	summer	3	Continuum Biomechanics and Mechanobiology
Introduction to Adaptive Control	winter	3	Systems Theory and Automatic Control
Models and Test Methods in Biomedical Engineering-lectures	summer	3	Institute of Biomedical Engineering
Matrix Computations in Signal Processing and Machine Learning	winter	3	Network and System Technology

University of Stuttgart

Course Title	Term	ECTS	Institute
Project Management	winter	3	Institute of Biomedical Engineering
Risk management and statistics in medical technologies	summer	3	Institute of Biomedical Engineering

M.Sc. Medical Engineering Macrostructure

mandatory internship

- examines the program`s learning outcomes
- first step to either an academic career or to working in industry
- at an company, a hospital or at an academic institution in Germany or abroad

Industrial / clinical-technical internship

Industrial	Clinical-technical	Project-related
 Section 1 Experimental research Measuring, testing and quality control Assembly technology 	 Section 1 Experimental research Measuring, testing and quality control Project- and technical planning 	
 Section 2 Operations and maintenance Engineering design and product development Product management Process development 	 Section 2 Operations and maintenance Product management and logistics Hygiene and sterile technologies Education and training on medical devices Clinic management 	Work on a project in the field of medical engineering at a medical technology company or at a medical care facility
1-4 weeks in at least three areas (see internship guideline)	1-4 weeks in at least three areas (see internship guideline)	1-4 weeks in at least three areas (see internship guideline)

Medical device companies in the region

Agglomeration of medical technology companies the region around the cities of Stuttgart,Tuttlingen Reutlingen and Hechingen.

A total of over 12,000 people are employed in 140 medical technology companies in the region.

source: www.bioregio-stern.de

Professional fields and career prospects

Examples of professional fields are:

- construction of medical electronic devices and sensor systems
- development of optical systems and imaging techniques
- application-oriented research and development of medical information technologies
- development and implementation of automation and software solutions
- biomedical research in institutes, companies and clinics, regulatory affairs